Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Algebraic techniques and perturbation methods to approach frequency response curves

Abstract : The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03749838
Contributeur : Alireza Ture Savadkoohi Connectez-vous pour contacter le contributeur
Soumis le : jeudi 11 août 2022 - 14:15:59
Dernière modification le : vendredi 12 août 2022 - 03:37:49

Fichier

LTS_IJNM_2022.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Claude-Henri Lamarque, Alireza Ture Savadkoohi. Algebraic techniques and perturbation methods to approach frequency response curves. International Journal of Non-Linear Mechanics, Elsevier, 2022, 144, pp.104096. ⟨10.1016/j.ijnonlinmec.2022.104096⟩. ⟨hal-03749838⟩

Partager

Métriques

Consultations de la notice

21

Téléchargements de fichiers

2